B.Tech I Year Examinations, September/October - 2021 ENGINEERING MECHANICS
 (Common to CE, ME, AE)

Time: 3 Hours
Max. Marks: 75
Answer any five questions

All questions carry equal marks

1. Three forces acting at a point are shown in Figure 1. The direction of the 300 N forces may vary, but the angle between them is always 40°. Determine the value of θ for which the resultant of the three forces is directed parallel to $b-b$.

Figure: 1
2. Two cylinders P fond Q rest in a channel as shown in the figure 2, the cylinder P has diameter of 100 mm and weighs 200 N , whereas the cylinder Q has diameter of 180 mm and weighs, fu 0 N . If the bottom width of the box is 180 mm , with one side vertical and other is ingnned at 60°, determine the forces acting at all the four points of the contact.

Figure: 2
3. Two cylinders A of weight 4000 N and B of weight 2000 N rest on smooth inclines as shown in figure 3. They are connected by a bar of negligible weight hinged to each cylinder at its geometric centre by smooth pins. Find the force P to be applied as shown in figure, such that it will hold the system in the given position.

Figure: 3
4. A homogeneous ladder 6 m long and weighing 400 N rests against a smooth wall. The angle between the ladder and the floor is 70°. The coefficient of friction between the floor and the ladder is 0.25 . How far up the ladder can a man weighing 80 kg walk before the ladder slips?
5. What is the effect of centrifugal tension on the tight and slack sides of a belt drive? Show that it is independent of the tight and slack side tensions and depends only on the velocity of the belt over the pulley.
6. Find the centroid of the lamina shown in figure 4.

Figure: 4
7. A swing bridge turns through $90{ }^{0}$ in 120 sec . The bridge is uniformly accelerated from rest for the first 40 seconds. Subsequently, it turns with a uniform angular velocity for the next 60 seconds. Now the motion of the bridge is uniformly retarded for the last 20 seconds. Find:
a) Angular acceleration
b) Maximum angular velocity
c) Angular retardation of the bridge.
8.a) Find the distance travelled by ' A ' in changing its velocity from $1 \mathrm{~m} / \mathrm{s}$ to $2 \mathrm{~m} / \mathrm{s}$. Assume weight of pulley as 100 N and its radius of gyration about centroid axis k as 2 as shown in figure 5. The disk rolls on horizontal surface without slipping.

Figure: 5
b) In a mechanism, a cross head moves in a straight guide in SHM. At distances 100 mm and 200 mm from its mean position, it has velocities of 4 mps and 2 mps respectively. Find the amplitude, maximum velocity and period of vibration.

